The broadening functions for quantum wells in LEDs and laser diodes below the lasing threshold are examined. Inhomogeneous and homogeneous broadening mechanisms are included. Hydrogen-atom-like exciton and the electron-hole plasma recombination models are considered. Material disorder and the Urbach tail are reviewed as the main reasons for the inhomogeneous broadening. Charge carrier scattering and relaxation times in the conduction and valence bands are examined as the origin for the homogeneous lifetime broadening. Two homogeneous lineshapes are compared using the momentum relaxation times obtained from the electron and hole mobilities available for GaAs. In addition to crystal disorder, the mutual collision of charge carriers in the quantum wells is examined as the reason for the relaxation time shortening. The analogy to pressure broadening in gases is used to combine the proper homogeneous and inhomogeneous broadening functions to a unified quantum well lineshape.