Abstract. We describe an operation to dynamically adapt the structure of the Tanner graph used during iterative decoding. Codes on graphsmost importantly, low-density parity-check (LDPC) codes-exploit randomness in the structure of the code. Our approach is to introduce a similar degree of controlled randomness into the operation of the messagepassing decoder, to improve the performance of iterative decoding of classical structured (i.e., non-random) codes for which strong code properties are known. We use ideas similar to Halford and Chugg (IEEE Trans. on Commun., April 2008), where permutations on the columns of the parity-check matrix are drawn from the automorphism group of the code, Aut(C). The main contributions of our work are: 1) We maintain a graph-local perspective, which not only gives a low-complexity, distributed implementation, but also suggests novel applications of our work, and 2) we present an operation to draw from Aut(C) such that graph isomorphism is preserved, which maintains desirable properties while the graph is being updated. We present simulation results for the additive white Gaussian noise (AWGN) channel, which show an improvement over standard sum-product algorithm (SPA) decoding.