Focusing on the twist angle for the minimal commensurate structure, we perform nonperturbative calculations of electron dynamics in the twisted bilayer graphene (TBG) under intense laser fields. We show that the TBG exhibits enriched high-harmonic generation that cannot occur in monolayer or conventional bilayers. We elucidate the mechanism of these nonlinear responses by analyzing dynamical symmetries, momentum-resolved dynamics, and roles of interlayer coupling. Our results imply nonlinear "optotwistronics," or controlling optical properties of layered materials by artificial twists.