Edge-Wiener Index of Level-3 Sierpinski Skeleton Network
CAIMIN DU,
YIQI YAO,
LIFENG XI
Abstract:The edge-Wiener index is an important topological index in Chemical Graph Theory, defined as the sum of distances among all pairs of edges. Fractal structures have received much attention from scientists because of their philosophical and aesthetic significance, and chemists have even attempted to synthesize various types of molecular fractal structures. The level-3 Sierpinski triangle is constructed similarly to the Sierpinski triangle and its skeleton networks have self-similarity. In this paper, by using th… Show more
Using the technique of finite pattern, for level-3 Sierpinski networks, we obtain their exact formulae of edge-hyper-Wiener index, which is the sum of the distances and the square of distances between all pairs of edges.
Using the technique of finite pattern, for level-3 Sierpinski networks, we obtain their exact formulae of edge-hyper-Wiener index, which is the sum of the distances and the square of distances between all pairs of edges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.