Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
As the demand for fish increases, the amount of wastewater generated from fishponds is also increasing with potential environmental and public health effects from their indiscriminate disposal. This study aimed at comparative analyses of the physicochemical and heavy metal constituents and potential DNA damage by wastewaters from natural and artificial fishponds using Allium cepa assay. A. cepa were grown on 3.13, 6.25, 12.5, 25.0, and 50.0% (v/v; wastewater/tap water) concentrations of each wastewater. At 48 and 72 h, respectively, genotoxic and root growth inhibition analyses were carried out on the exposed onions. The onion root tips exposed to wastewaters showed a significant (P < 0.05) inhibition of root growth and cell division in a concentration-dependent manner. Additionally, chromosomal abnormalities like spindle disturbances, sticky chromosomes, micronucleus, bridges, and binucleated cells were observed in the exposed onions and their induction was higher significantly relative to the negative control. Generally, wastewater from the natural fishpond caused higher chromosomal aberrations than the wastewater from artificial fishpond. It is our belief that the cytotoxicity and genotoxicity observed in the onions were primarily caused by heavy metals like Cr, Cd, Fe, Pb, Cu, and Zn found in the wastewaters. These metals also showed a significant carcinogenic and non-carcinogenic risks in children and adults with Cd as the highest contributor to these detrimental risks. Ingestion route was the major exposure route to the toxic metals in these wastewaters. Wastewater from the natural fishpond showed a higher health risk than the wastewater from the artificial fishpond. These findings suggest that the wastewaters from natural and artificial fishpond contain compounds that might induce cytogenotoxicity in exposed organisms.
As the demand for fish increases, the amount of wastewater generated from fishponds is also increasing with potential environmental and public health effects from their indiscriminate disposal. This study aimed at comparative analyses of the physicochemical and heavy metal constituents and potential DNA damage by wastewaters from natural and artificial fishponds using Allium cepa assay. A. cepa were grown on 3.13, 6.25, 12.5, 25.0, and 50.0% (v/v; wastewater/tap water) concentrations of each wastewater. At 48 and 72 h, respectively, genotoxic and root growth inhibition analyses were carried out on the exposed onions. The onion root tips exposed to wastewaters showed a significant (P < 0.05) inhibition of root growth and cell division in a concentration-dependent manner. Additionally, chromosomal abnormalities like spindle disturbances, sticky chromosomes, micronucleus, bridges, and binucleated cells were observed in the exposed onions and their induction was higher significantly relative to the negative control. Generally, wastewater from the natural fishpond caused higher chromosomal aberrations than the wastewater from artificial fishpond. It is our belief that the cytotoxicity and genotoxicity observed in the onions were primarily caused by heavy metals like Cr, Cd, Fe, Pb, Cu, and Zn found in the wastewaters. These metals also showed a significant carcinogenic and non-carcinogenic risks in children and adults with Cd as the highest contributor to these detrimental risks. Ingestion route was the major exposure route to the toxic metals in these wastewaters. Wastewater from the natural fishpond showed a higher health risk than the wastewater from the artificial fishpond. These findings suggest that the wastewaters from natural and artificial fishpond contain compounds that might induce cytogenotoxicity in exposed organisms.
The waste generated from cement manufacturing is an important source of heavy metal contamination of groundwater and soil. This study investigated the concentration of toxic metals in the soil of a major cement factory and nearby groundwater. Ecological and carcinogenic risks of the metals were calculated. Potential reproductive toxicity and genotoxic effects of the samples were assessed in sex and somatic cells of male mice using sperm abnormalities and bone marrow micronucleus (MN) assays, respectively. Also, the serum ALP, ALT, AST, Total Testosterone (TT), Luteinizing Hormone (LH), and Follicle Stimulating Hormone (FSH); and liver SOD and CAT activities were measured in the treated mice. Cr, Cu, Ni, Zn, Mn, Cd, and Pb levels in the soil and groundwater exceeded the allowable maximum standard. Ingestion and dermal contact were the most probable routes of human exposure with children having about three times higher probability of exposure to the metals than the adults. Ni, Pb, and Cr presented carcinogenic risks in children and adults. In the MN result, nuclear abnormalities in the studied mice especially micronucleated polychromatic erythrocytes increased significantly (p < 0.05). Compared to the negative control, the ratio of PCE/NCE showed the cytotoxicity of the two samples. Data further showed a significant increase in the serum ALP, AST, and ALT while the liver CAT and SOD activities concomitantly decreased in the exposed mice. Sperm morphology result showed that the samples contained constituents capable of inducing reproductive toxicity in exposed organisms, with alterations to the concentrations of TT, LH, and FSH. Toxic metal constituents of the samples were believed to induce these reported reproductive toxicity and genotoxic effect. These results showed the environmental pollution caused by cement factory and the potential effects the pollutants might have on exposed eukaryotic organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.