The promise of highly personalized oncology care using artificial intelligence (AI) technologies has been forecasted since the emergence of the field. Cumulative advances across the science are bringing this promise to realization, including refinement of machine learning– and deep learning algorithms; expansion in the depth and variety of databases, including multiomics; and the decreased cost of massively parallelized computational power. Examples of successful clinical applications of AI can be found throughout the cancer continuum and in multidisciplinary practice, with computer vision–assisted image analysis in particular having several U.S. Food and Drug Administration–approved uses. Techniques with emerging clinical utility include whole blood multicancer detection from deep sequencing, virtual biopsies, natural language processing to infer health trajectories from medical notes, and advanced clinical decision support systems that combine genomics and clinomics. Substantial issues have delayed broad adoption, with data transparency and interpretability suffering from AI’s “black box” mechanism, and intrinsic bias against underrepresented persons limiting the reproducibility of AI models and perpetuating health care disparities. Midfuture projections of AI maturation involve increasing a model’s complexity by using multimodal data elements to better approximate an organic system. Far-future positing includes living databases that accumulate all aspects of a person’s health into discrete data elements; this will fuel highly convoluted modeling that can tailor treatment selection, dose determination, surveillance modality and schedule, and more. The field of AI has had a historical dichotomy between its proponents and detractors. The successful development of recent applications, and continued investment in prospective validation that defines their impact on multilevel outcomes, has established a momentum of accelerated progress.