Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Global warming affects rice crop production, causing deterioration of rice grain quality. This study used C-band microwave images taken by the Sentinel-1 satellites to monitor rice crop growth with the aim to understand microwave backscatter behavior, focusing on decreases in panicle water contents with ripening, which affect C-band backscatter. Time-series changes illustrated a similar tendency across all four analysis years, showing that VV/VH ratio at an incidence angle of 45–46° stopped decreasing to be stable over the reproductive and ripening periods due to reductions in the panicle water content that allowed for greater microwave penetration into the canopy, thereby increasing panicle-related backscatter. Furthermore, multivariate regression analysis combined with field observations showed that VV and VH with the shallow incidence angles were significantly negatively correlated with panicle water content, which well demonstrated backscatter increases with plant senescence. Furthermore, it was observed that backscatter behaviors were highly consistent with changes in crop phenology and surface condition. Accordingly, Sentinel-1 images with shallow incidence angles and high revisit observation capabilities offer a strong potential for estimating panicle water content. Therefore, it seems reasonable to conclude that C-band SAR data is capable of retrieving grain filling conditions to estimate proper harvesting time.
Global warming affects rice crop production, causing deterioration of rice grain quality. This study used C-band microwave images taken by the Sentinel-1 satellites to monitor rice crop growth with the aim to understand microwave backscatter behavior, focusing on decreases in panicle water contents with ripening, which affect C-band backscatter. Time-series changes illustrated a similar tendency across all four analysis years, showing that VV/VH ratio at an incidence angle of 45–46° stopped decreasing to be stable over the reproductive and ripening periods due to reductions in the panicle water content that allowed for greater microwave penetration into the canopy, thereby increasing panicle-related backscatter. Furthermore, multivariate regression analysis combined with field observations showed that VV and VH with the shallow incidence angles were significantly negatively correlated with panicle water content, which well demonstrated backscatter increases with plant senescence. Furthermore, it was observed that backscatter behaviors were highly consistent with changes in crop phenology and surface condition. Accordingly, Sentinel-1 images with shallow incidence angles and high revisit observation capabilities offer a strong potential for estimating panicle water content. Therefore, it seems reasonable to conclude that C-band SAR data is capable of retrieving grain filling conditions to estimate proper harvesting time.
Poplar is one of the most widespread fast-growing forest species. In Northern Italy, plantations are characterized by large interannual fluctuations, requiring frequent monitoring to inform on wood supply and to manage the stands. The use of radar satellite data is proving useful for forest monitoring, being weather independent and sensitive to the changes in forest canopy structure, but it has been scarcely tested in the case of poplar. Here, L-band ALOS2 (Advanced Land Observing Satellite-2) dual-pol data were tested to detect clear-cut plantations in consecutive years. ALOS2 quad-pol data were used to discriminate among different age classes, a much complex task than detecting poplar plantations extent. Results from different machine learning algorithms indicate that with dual-pol data, poplar forest can be discriminated from clear-cut areas with 80% overall accuracy, similar to what is usually obtained with optical data. With quad-pol data, four age classes were classified with moderate overall accuracy (73%) based on polarimetric decompositions, three 3 age classes with higher accuracy (87%) based on HV band. Sources of error are represented by poplar areas of intermediate age when stems, branches and leaves were not developed enough to detect by scattering mechanisms. This study demonstrates the feasibility of monitoring poplar plantations with satellite radar, which represents a growing source of information thanks to already-planned future satellite missions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.