The transmission of viruses/ bacteria cause infection predominantly via aerosols. The transmission mechanism of respiratory diseases is complex, including direct or indirect contact, large droplet, and airborne routes apart from close contact transmission. With this pretext, we have investigated two modes of droplet evaporation to understand its significance in airborne disease transmission; a droplet in a contact-free environment, which evaporates and forms droplet nuclei, and a droplet on a hydrophilic substrate (fomite). The study examines mass transport, the deposition pattern of bacteria in the precipitates, and their survival and virulence. The osmotic pressure increases with the salt concentration, inactivating the bacteria embedded in the precipitates with accelerated evaporation. Further, the bacteria's degree of survival and enhanced pathogenicity are compared for both evaporation modes. The striking differences in pathogenicity are attributed to the evaporation rate, oxygen availability, and reactive oxygen species (ROS) generation.