Existing automatic code comment generators mainly focus on producing a general description of functionality for a given code snippet without considering developer intentions. However, in real-world practice, comments are complicated, which often contain information reflecting various intentions of developers, e.g., functionality summarization, design rationale, implementation details, code properties, etc. To bridge the gap between automatic code comment generation and realworld comment practice, we define Developer-Intent Driven Code Comment Generation, which can generate intent-aware comments for the same source code with different intents. To tackle this challenging task, we propose DOME, an approach that utilizes Intent-guided Selective Attention to explicitly select intent-relevant information from the source code, and produces various comments reflecting different intents. Our approach is evaluated on two real-world Java datasets, and the experimental results show that our approach outperforms the state-of-the-art baselines. A human evaluation also confirms the significant potential of applying DOME in practical usage, enabling developers to comment code effectively according to their own needs.