ObjectivesTo apply a human factors framework to understand whether checklists reduce clinical diagnostic error have (1) gaps in composition; and (2) components that may be more likely to reduce errors.DesignSystematic review.Data sourcesPubMed, EMBASE, Scopus and Web of Science were searched through 15 February 2022.Eligibility criteriaAny article that included a clinical checklist aimed at improving the diagnostic process. Checklists were defined as any structured guide intended to elicit additional thinking regarding diagnosis.Data extraction and synthesisTwo authors independently reviewed and selected articles based on eligibility criteria. Each extracted unique checklist was independently characterised according to the well-established human factors framework: Systems Engineering Initiative for Patient Safety 2.0 (SEIPS 2.0). If reported, checklist efficacy in reducing diagnostic error (eg, diagnostic accuracy, number of errors or any patient-related outcomes) was outlined. Risk of study bias was independently evaluated using standardised quality assessment tools in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses.ResultsA total of 30 articles containing 25 unique checklists were included. Checklists were characterised within the SEIPS 2.0 framework as follows: Work Systems subcomponents of Tasks (n=13), Persons (n=2) and Internal Environment (n=3); Processes subcomponents of Cognitive (n=20) and Social and Behavioural (n=2); and Outcomes subcomponents of Professional (n=2). Other subcomponents, such as External Environment or Patient outcomes, were not addressed. Fourteen checklists examined effect on diagnostic outcomes: seven demonstrated improvement, six were without improvement and one demonstrated mixed results. Importantly, Tasks-oriented studies more often demonstrated error reduction (n=5/7) than those addressing the Cognitive process (n=4/10).ConclusionsMost diagnostic checklists incorporated few human factors components. Checklists addressing the SEIPS 2.0 Tasks subcomponent were more often associated with a reduction in diagnostic errors. Studies examining less explored subcomponents and emphasis on Tasks, rather than the Cognitive subcomponents, may be warranted to prevent diagnostic errors.