2024
DOI: 10.30812/matrik.v23i2.3499
|View full text |Cite
|
Sign up to set email alerts
|

Educational Data Mining: Multiple Choice Question Classification in Vocational School

Sucipto Sucipto,
Didik Dwi Prasetya,
Triyanna Widiyaningtyas

Abstract: Data mining on student learning outcomes in the education sector can overcome this problem. This research aimed to provide a solution for selecting quality multiple choice questions (MCQ) using the results of students’ mid-semester exams in vocational high schools using a Data Mining approach. The research method used was the Cross-Industry Standard Process for Machine Learning (CRISP-ML) model. Steps to assess the accuracy of analyzing the difficulty level of questions based on student profile data and midter… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
0
0
1

Year Published

2024
2024
2024
2024

Publication Types

Select...
3
1
1

Relationship

0
5

Authors

Journals

citations
Cited by 6 publications
(1 citation statement)
references
References 29 publications
0
0
0
1
Order By: Relevance
“…Langkah kedua adalah pre-processing. Pre-processing yang dilakukan adalah konversi data dari beberapa atribut [19], [20]. Konversi data yang dilakukan adalah mengubah data dari bentuk teks ke bentuk angka [21].…”
Section: Gambar 2 Perbandingan Labelunclassified
“…Langkah kedua adalah pre-processing. Pre-processing yang dilakukan adalah konversi data dari beberapa atribut [19], [20]. Konversi data yang dilakukan adalah mengubah data dari bentuk teks ke bentuk angka [21].…”
Section: Gambar 2 Perbandingan Labelunclassified