Substantial progress has been made in understanding how teachers design for learning. However, there remains a paucity of evidence of the actual students' response towards leaning designs. Learning analytics has the power to provide just-in-time support, especially when predictive analytics is married with the way teachers have designed their course, or so-called a learning design. This study investigates how learning designs are configured over time and their impact on student activities by analyzing longitudinal data of 38 modules with a total of 43,099 registered students over 30 weeks at the Open University UK, using social network analysis and panel data analysis. Our analysis unpacked dynamic configurations of learning designs between modules over time, which allows teachers to reflect on their practice in order to anticipate problems and make informed interventions. Furthermore, by controlling for the heterogeneity between modules, our results indicated that learning designs were able to explain up to 60% of the variability in student online activities, which reinforced the importance of pedagogical context in learning analytics.