Over the last few years, online training courses have had a significant increase in the number of participants. However, most web-based educational systems have drawbacks compared to traditional classrooms. On the one hand, the structure and nature of the courses directly affect the number of active participants; on the other hand, it becomes difficult for teachers to guide students in choosing the appropriate learning resource due to the abundance of online learning resources. Students also find it challenging to decide which educational resources to choose according to their condition. The resource recommender system can be used as a Guide tool for educational resource recommendations to students so that these suggestions are tailored to the preferences and needs of each student. In this paper, it was presented a resource recommender system with the help of Bi-LSTM networks. Utilizing this type of structure involves both long-term and short-term interests of the user and, due to the gradual learning property of the system, supports the learners' behavioral changes. It has more appropriate recommendations with a mean accuracy of 0.95 and a loss of 0.19 compared to a similar article.