In recent years, improved road safety by monitoring human factors i.e., stress, mental load, sleepiness, fatigue etc. of vehicle drivers has been addressed in a number of studies. Due to the individual variations and complex dynamic in-vehicle environment systems that can monitor such factors of a driver while driving is challenging. This paper presents a drivers' stress monitoring system based on electroencephalography (EEG) signals enabling individual---focused computational approach that can generate automatic decision. Here, a combination of different signal processing i.e., discrete wavelet transform, largest Lyapunov exponent (LLE) and modified covariance have been applied to extract key features from the EEG signals. Hybrid classification approach Fuzzy-CBR (case-based reasoning) is used for decision support. The study has focused on both long and short-term temporal assessment of EEG signals enabling monitoring in different time intervals. In short time interval, which requires complex computations, the classification accuracy using the proposed approach is 79% compare to a human expert. Accuracy of EEG in developing such system is also compared with other reference signals e.g., Electrocardiography (ECG), Finger temperature, Skin conductance, and Respiration. The results show that in decision making the system can handle individual variations and provides decision in each minute time interval.