“…Various deep learning algorithms have been employed in EEG-based BCI applications, whereas CNN is clearly the most frequent one. For example, Arnau-González et al ( 2017 ), Tang et al ( 2017 ), Vilamala et al ( 2017 ), Antoniades et al ( 2018 ), Aznan et al ( 2018 ), Behncke et al ( 2018 ), Dose et al ( 2018 ), El-Fiqi et al ( 2018 ), Nguyen and Chung ( 2018 ), Völker et al ( 2018 ), Alazrai et al ( 2019 ), Amber et al ( 2019 ), Amin et al ( 2019b ), Chen et al ( 2019a , b ), Fahimi et al ( 2019 ), Gao et al ( 2019 ), Olivas-Padilla and Chacon-Murguia ( 2019 ), Ozdemir et al ( 2019 ), Roy et al ( 2019 ), Song et al ( 2019 ), Tayeb et al ( 2019 ), Zgallai et al ( 2019 ), Zhao et al ( 2019 ), Aldayel et al ( 2020 ), Gao et al ( 2020a , b ), Hwang et al ( 2020 ), Ko et al ( 2020 ), Li Y. et al ( 2020 ), Liu J. et al ( 2020 ), Miao et al ( 2020 ), Oh et al ( 2020 ), Polat and Özerdem ( 2020 ), Atilla and Alimardani ( 2021 ), Cai et al ( 2021 ), Dang et al ( 2021 ), Deng et al ( 2021 ), Huang et al ( 2021 ), Ieracitano et al ( 2021 ), Mai et al ( 2021 ), Mammone et al ( 2021 ), Petoku and Capi ( 2021 ), Reddy et al ( 2021 ), Tiwari et al ( 2021 ), Zhang et al ( 2021 ), Ak et al ( 2022 ), and, Huang et al ( 2022 ) have explored deep learning-based algorithms. However, more recent BCI studies have implemented other deep learning modalities including,…”