There is a growing interest in human gamma‐band oscillatory activity due to its direct link to neuronal populations, its associations with many cognitive processes, and its positive relationship with fMRI BOLD signal. Visual gamma has been successfully detected using concurrent EEG‐fMRI recordings and linked to activity in the visual cortex using voxel‐wise regression analysis. As gamma‐band oscillations reflect predominantly feedforward projections between brain regions, its inclusion in functional connectivity analysis is highly recommended; however, very few studies have investigated this line of research. In the current study, we aimed to explore this gap by asking which fMRI brain network is related to gamma activity induced by the color discrimination task. Advanced denoising strategies and multitaper spectral decomposition were applied to EEG data to detect gamma oscillations, and group independent component analysis was performed on fMRI data to identify task‐related neural networks. Despite using only trials without motor response (50% of the trials), the two neural measures were successfully coupled. One of the six task‐related networks, the occipito‐parietal network, exhibited significant trial‐by‐trial covariations with gamma oscillations. In addition to the expected extrastriate visual cortex, the network encompasses extensive brain activations in the precuneus, bilateral intraparietal, and anterior insular cortices. We argue that the visual cortex is the source of gamma, whereas the remaining brain regions exhibit feedforward and feedback connections related to this oscillatory activity. Our findings provide evidence for the electrophysiological basis of the connectivity revealed by BOLD signal and impart novel insights into the neural mechanism of color discrimination.