Compared with the efficacy of traditional physical therapy, a new therapy utilizing motor imagery can induce brain plasticity and allows partial recovery of motor ability in patients with hemiplegia after stroke. Here, we proposed an updated paradigm utilizing motor coordination imagery involving the lower limbs (normal gait imagery and hemiplegic gait imagery after stroke) and decoded such imagery via an electroencephalogram- (EEG-) based brain network. Thirty subjects were recruited to collect EEGs during motor coordination imagery involving the lower limbs. Time-domain analysis, power spectrum analysis, time-frequency analysis, brain network analysis, and statistical analysis were used to explore the neural mechanisms of motor coordination imagery involving the lower limbs. Then, EEG-based brain network features were extracted, and a support vector machine was used for decoding. The results showed that the two employed motor coordination imageries mainly activated sensorimotor areas; the frequency band power was mainly concentrated within theta and alpha bands, and brain functional connections mainly occurred in the right forehead. The combination of the network attributes of the EEG-based brain network and the spatial features of the adjacency matrix had good separability for the two kinds of gait imagery (
p
< 0.05), and the average classification accuracy of the combination feature was 92.96% ± 7.54%. Taken together, our findings suggest that brain network features can be used to identify normal gait imagery and hemiplegic gait imagery after stroke.