Here the phenomenon of interest is the flash of recognition and accompanying emotion one experiences when one receives a familiar stimulus. We explain the speed and richness of the event by postulating phase transitions in cortical neuropil: condensation from a gas-like phase to a liquid-like phase followed by evaporation. We model the process with a Carnot-like thermodynamic cycle at three successive levels of complexity: primary sensory cortices; limbic system; global neocortex. We replace the thermodynamic state variables of pressure, volume and temperature with neurodynamic variables, respectively mean beta-gamma power, pattern stability (negentropy), and neural feedback gain (mean interaction strength). We cite evidence that all sensory cortices use this cycle, necessarily so for two reasons. They all evolved from the primordial forebrain of vertebrates dominated by olfaction; they all transmit the same form of perceptual information, wave packets, so signals in all modalities armodel by linear matrix concatenation.