Substantial evidence suggests that the aggregation of amyloid-β (Aβ) peptide into fibrillar structures that is rich in β-sheets is implicated as the cause of Alzheimer's disease. Therefore, an attractive therapeutic strategy is to prevent or alter Aβ aggregation. Phenolic compounds are natural substances that are composed of one or more aromatic phenolic rings and present in wine, tea, fruits, vegetables and a wide variety of plants. In this work, we investigated the effects of ferulic acid, morin, quercetin and gossypol against Aβ aggregation. From the ThT and turbidity assays, it is observed that in addition to the fibril aggregate, another type of aggregate is formed in the presence of morin, quercetin, and gossypol. On the other hand, ferulic acid did not prevent fibril formation, but it did appear to reduce the average length of fibrils compared to Aβ alone. To study the protective effects of phenolic compounds on Aβ-induced toxicity, we utilized the nematode Caenorhabditis elegans (C. elegans) as an in vivo model organism, human Aβ is expressed intracellularly in the body wall muscle. We found that exposure of Caenorhabditis elegans to ferulic acid give more protection against Aβ toxicity than morin, quercetin and gossypol.