In this work, an alternative approach to prevent unidirectional grain growth in wire + arc additive manufacturing (WAAM) is proposed and assessed, by moving cyclically the torch forward and backward, likewise the welding technique known as switchback. A series of tests were planned with CMT (cold metal transfer) process to compare three wall-like build-ups, which uses different deposition patterns, namely, in one-way direction, reverse direction, and switchback. The same equivalent travel speed and number of deposited layers were kept among them. Longitudinal sections were taken to identify the grain growth behaviour. Finally, samples were removed from the walls for porosity evaluation. The results confirmed the characteristics of unidirectional grain growth, when one-way direction condition was employed, and the break of growth direction between layers, when reverse direction was used, yet a zigzag pattern became present. Differently, the application of switchback showed no preferential or unidirectional grain growth, suggesting less anisotropy of mechanical properties. In addition, switchback reduced porosity.