Low temperature fuel cells (LTFCs) have received broad attention due to their low operating temperature, virtually zero emissions, high power density and efficiency. However, the limited stability of the catalysts is a critical limitation to the large scale commercialization of LTFCs. State of the art carbon supports undergo corrosion under harsh chemical and electrochemical oxidation conditions, which results in performance degradation of catalysts. Therefore, non-carbon materials which are highly oxidation resistant under strongly oxidizing conditions of LTFCs are ideal alternative supports. This minireview highlights the advances and scenarios in using nano-ceramics as supports to enhance the stability of catalysts, the solutions to improve electrical conductivity of nano-ceramic materials, and the synergistic effects between metal catalyst and support to help improve the catalytic activity and CO/SO2 tolerance of catalysts.