Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Neural progenitor cells (NPCs) reside in the brain and participate in the mechanism of neurogenesis that permits the brain to generate the building blocks for enhancement of cognitive abilities and acquisition of new skills. The existence of NPCs in brain has opened a novel dimension of research to explore their potential for treatment of various neurodegenerative disorders. The present study provides novel insights into the intracellular mechanisms in neuronal cells proliferation, maturation and differentiation regulated by Quinic acid (QA). Furthermore, this study might help in discovery and development of lead molecule that can overcome the challenges in the treatment of neurodegenerative diseases. The growth supporting effect of QA was studied using MTT assay. For that purpose, hippocampal cell cultures of neonatal rats were treated with different concentrations of QA and incubated for 24, 48 and 72 h. Gene and protein expressions of the selected molecular markers nestin, neuron‐specific class III beta‐tubulin (Tuj‐1), neuronal nuclear protein (NeuN), neuronal differentiation 1 (NeuroD1), glial fibrillary acidic protein (GFAP), neuroligin (NLGN) and vimentin were analyzed. QA‐induced cell proliferation and differentiation of hippocampal progenitor cells was also accompanied by significantly increased expression of progenitor and immature neuronal marker, mature neuronal marker and differentiating factor, that is, nestin, Tuj‐1, NeuN and NeuroD1, respectively. On the other hand, vimentin downregulation and constant GFAP expression were observed following QA treatment. Additionally, the effects of QA on the recovery of stressed cells was studied using in vitro model of oxygen glucose deprivation (OGD). It was observed that hippocampal cells were able to recover from OGD following the treatment with QA. These findings suggest that QA treatment promotes hippocampal neurogenesis by proliferating and differentiating of NPCs and recovers neurons from stress caused by OGD. Thus, the neurogenic potential of QA can be explored for the treatment of neurodegenerative disorders.
Neural progenitor cells (NPCs) reside in the brain and participate in the mechanism of neurogenesis that permits the brain to generate the building blocks for enhancement of cognitive abilities and acquisition of new skills. The existence of NPCs in brain has opened a novel dimension of research to explore their potential for treatment of various neurodegenerative disorders. The present study provides novel insights into the intracellular mechanisms in neuronal cells proliferation, maturation and differentiation regulated by Quinic acid (QA). Furthermore, this study might help in discovery and development of lead molecule that can overcome the challenges in the treatment of neurodegenerative diseases. The growth supporting effect of QA was studied using MTT assay. For that purpose, hippocampal cell cultures of neonatal rats were treated with different concentrations of QA and incubated for 24, 48 and 72 h. Gene and protein expressions of the selected molecular markers nestin, neuron‐specific class III beta‐tubulin (Tuj‐1), neuronal nuclear protein (NeuN), neuronal differentiation 1 (NeuroD1), glial fibrillary acidic protein (GFAP), neuroligin (NLGN) and vimentin were analyzed. QA‐induced cell proliferation and differentiation of hippocampal progenitor cells was also accompanied by significantly increased expression of progenitor and immature neuronal marker, mature neuronal marker and differentiating factor, that is, nestin, Tuj‐1, NeuN and NeuroD1, respectively. On the other hand, vimentin downregulation and constant GFAP expression were observed following QA treatment. Additionally, the effects of QA on the recovery of stressed cells was studied using in vitro model of oxygen glucose deprivation (OGD). It was observed that hippocampal cells were able to recover from OGD following the treatment with QA. These findings suggest that QA treatment promotes hippocampal neurogenesis by proliferating and differentiating of NPCs and recovers neurons from stress caused by OGD. Thus, the neurogenic potential of QA can be explored for the treatment of neurodegenerative disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.