In this study, divided into two parts, the effect on a two-dimensional backward-facing step flow (BFSF) of a cylinder placed downstream of the step was numerically investigated. While in Part 1, the numerical simulations carried out without the cylinder were validated using the available literature data, in Part 2 the effect of the cylinder was investigated. In the laminar regime, different Reynolds numbers were considered. In the turbulent regime, the effects on the flow structure of a cylinder placed at different horizontal and vertical locations downstream of the step were comparatively studied. When the cylinder was positioned below the step edge mid-plane, flow over the step was not altered by a cylinder. However, in other locations of a cylinder, the added cylinder modified the structure of flow, increasing the skin friction coefficient in the recirculation zone. Furthermore, the pressure coefficient of the bottom wall increased immediately downstream of the cylinder and farther downstream of the reattachment point and remained stable in the flow recovery process. Moreover, the presence of the step significantly influenced the dynamics of the vortex generation and shedding leading to an asymmetric wake distribution.