A universal method for the synthesis of water‐based inorganic–polymer hybrid particles was developed in which no organic solvent is required. To demonstrate the versatility of this process, zinc phosphate, calcium carbonate, and barium sulfate were chosen as different pigment examples which additionally can be utilized for functional coating applications. Furthermore, a complex polymeric composition based on epoxy–acrylic–styrene was chosen to illustrate the versatility from a soft matter point of view. The overall synthesis process was carried out by coemulsification of two inverse miniemulsions, containing two precursors, surrounded with a polymerizable continuous phase. This was then transferred to a direct miniemulsion by addition to a surfactant solution and subsequent homogenization followed by radical polymerization of the vinylic monomers. To our knowledge, this is the first work where a polymerizable continuous phase has been used in an inverse miniemulsion formation followed by transfer to a direct miniemulsion, followed by polymerization, so that the result is a water‐based dispersion. The resultant dispersion was characterized by dynamic light scattering; the particles were investigated via transmission electron microscopy with in
situ determination of crystallinity using electron diffraction. Elemental analysis was also performed for the particles and the polymerized miniemulsions using X‐ray fluorescence and inductively coupled plasma‐optical emission spectroscopy, respectively. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011