The ecological importance of phytoplankton-benthic-propagules (PBP) from coastal sediments, except tropical-monsoonal-estuaries/coast, is well documented. Monsoonal estuaries recieves a high amount of benthic suspension (sediments, other detritus, PBP, and nutrients) due to high river-discharge during monsoon, bringing drastic changes in the environment (affecting water transparency, macronutrients concentration, and salinity), which in turn influence the plankton and phytoplankton per se. This study elucidates PBP germination and subsequent growth representing downstream, midstream, and upstream locations of monsoon-influenced Mandovi-Zuari riverine systems (Goa, India), to macronutrients (nitrate, phosphate, silicate, and in-combination) and light-intensities at higher salinity. Since, PBP, after introduction to estuary, experience higher salinity conditions with reduced river-discharge salinity of ~35 PSU was selected. Diatoms dominated the viable PBP community, but the maximum growth and sustained photosynthetic activity were observed when macronutrients were supplied in combination then individual supply. Here, the utility of the variable fluorescence technique in PBP resurrection (detection of viability and responses) was also explored. The PBP lag-period was similar for macronutrients but decreased with an increase in light-intensity. For PBP (germination and photosynthetic activity), light-intensities drive the rate of improvement/development, whereas the nutrients are essential for maintaining vegetative population upon germination. The PBP dominance of common planktonic species (Skeletonema and Thalassiosira) along the river also signifies the role of seawater intrusion in distribution. Both species are light-sensitive, responded similarly, and known to cause single species blooms and contributed significantly to the total community in the region, but on different occasions depending on the species tolerance to salinity.