The efficacy of using natural enemies to control pests under field conditions largely depends on their mobility and, more specifically, on their capacity to quickly locate pest infestation. For many natural enemies, for example parasitoids, mobility is directly related to flight aptitude, which is determined by the capacity and inclination of a species to engage in flight. In this study, we determined the various factors that affected flight performance of Microplitis mediator (Haliday) (Hymenoptera: Braconidae), using a computer-monitored flight mill. No differences were found in flight performance (i.e., flight distance, duration, speed) between both sexes of M. mediator, and flight capacity increased up to an age of 5-7 days followed by a gradual decline afterwards. For one-day-old female parasitoids, mean (±SE) flight distance and duration were 6.23 ± 0.88 km and 85.15 ± 14.44 min, respectively, with a maximum flight distance of 18.0 km. For male parasitoids, mean flight distance and duration were 5.27 ± 0.51 km and 85.74 ± 7.63 min, respectively. Mating status did not affect flight performance of males, while flight distance of four-day-old ovipositing M. mediator females was much lower than that of un-mated females of the same age. Un-mated adults flew most actively at 22-24°C and inclination to fly gradually declined with decreasing temperature. Temperatures above 26°C considerably reduced flight activity of M. mediator. Wasps engaged in normal flight under a broad range of relative humidity (RH) conditions, with an optimum RH range identified as 75-90%. Our research shows that M. mediator is a highly active parasitoid, because both sexes show great inclination to fly under a range of environmental conditions and flight capacity at different ages. Our results can help explain parasitoid performance in the field and provide baseline information to help guide augmentative releases.