BackgroundDietary modification via both caloric and nutrient restriction is associated with multiple health benefits, some of which are related to an improvement in antioxidant status and a decrease in the production of reactive oxygen species. The Daniel Fast is based on the Biblical book of Daniel, is commonly partaken for 21 days, and involves food intake in accordance with a stringent vegan diet. The purpose of the present study was to determine the effect of a 21 day Daniel Fast on biomarkers of antioxidant status and oxidative stress.Methods43 subjects (13 men; 30 women; 35 ± 1 yrs; range: 20-62 yrs) completed a 21 day Daniel Fast following the guidelines provided by investigators. Subjects reported to the lab in a 12 hour post-absorptive state both pre fast (day 1) and post fast (day 22). At each visit, blood was collected for determination of malondialdehyde (MDA), hydrogen peroxide (H2O2), nitrate/nitrite (NOx), Trolox Equivalent Antioxidant Capacity (TEAC), and Oxygen Radical Absorbance Capacity (ORAC). Subjects recorded dietary intake during the 7 day period immediately prior to the fast and during the final 7 days of the fast.ResultsA decrease was noted in MDA (0.66 ± 0.0.03 vs. 0.56 ± 0.02 μmol L-1; p = 0.004), while H2O2 demonstrated a trend for lowering (4.42 ± 0.32 vs. 3.78 ± 0.21 μmol L-1; p = 0.074). Both NOx (18.79 ± 1.92 vs. 26.97 ± 2.40 μmol L-1; p = 0.003) and TEAC (0.47 ± 0.01 vs. 0.51 ± 0.01 mmol L-1; p = 0.001) increased from pre to post fast, while ORAC was unchanged (5243 ± 103 vs. 5249 ± 183 μmol L-1 TE; p = 0.974). As expected, multiple differences in dietary intake were noted (p < 0.05), including a reduction in total calorie intake (2185 ± 94 vs. 1722 ± 85).ConclusionModification of dietary intake in accordance with the Daniel Fast is associated with an improvement in selected biomarkers of antioxidant status and oxidative stress, including metabolites of nitric oxide (i.e., NOx).