International audienceWhile they have different electronic properties n-type MoO3 and p-type NiO are very efficient as buffer layers between the ITO anode and the organic electron donor in organic photovoltaic cells. While it is admitted that MoO3 is n-type, its band structure is still under study. Here, the band alignment at the interface of an ITO/MoO3 heterojunction is studied by X-ray photoelectron spectroscopy (XPS). The same study is realized on the structure ITO/NiO, NiO being a p-type semiconductor. The measurements have been performed on samples obtained under the same experimental conditions as those used to achieve organic photovoltaic cells. The MoO3 (NiO) upper layer was 3 nm thick. The semidirect XPS technique used to measure the band offsets allows us to estimate the band discontinuities at the interface ITO/MoO3: ΔEv = 0.50 eV and ΔEc = 0.90 eV, while at the interface ITO/NiO we have ΔEv = −2.10 eV and ΔEc = −1.90 eV. Therefore, n-type MoO3 and p-type NiO, which are both very efficient anode buffer layers (ABLs), exhibit different band structure at the contact with ITO. However, the measurement, by means of a Kelvin probe, of the work functions of the structures ITO/NiO and ITO/MoO3, shows that they are close and significantly higher than that of ITO alone