Copper oxide (CuO) ultra-thin films were obtained using magnetron sputtering technology with glancing angle deposition technique (GLAD) in a reactive mode by sputtering copper target in pure argon. The substrate tilt angle varied from 45 to 85° and 0°, and the sample rotation at a speed of 20 rpm was stabilized by the GLAD manipulator. After deposition, the films were annealed at 400 °C/4 h in air. The CuO ultra-thin film structure, morphology, and optical properties were assessed by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), X-ray reflectivity (XRR), and optical spectroscopy. The thickness of the films was measured post-process using a profilometer. The obtained copper oxide structures were also investigated as gas-sensitive materials after exposure to acetone in the sub-ppm range. After deposition, gas-sensing measurements were performed at 300, 350, and 400 °C and 50% relative humidity (RH) level. We found that the sensitivity of the device is related to the thickness of CuO thin films, whereas the best results are obtained with an 8 nm thick sample.