Expression of estrogen receptor alpha (ERα) in breast cancer identifies patients most likely to respond to endocrine treatment. The second estrogen receptor, ERβ, is also expressed in breast tumors, but its function and therapeutic potential needs further study. Whereas in vitro studies have established that ERβ opposes transcriptional and proliferative functions of ERα, several clinical studies report its correlation to proliferative markers and poorer prognosis. The data demonstrating that ERβ opposes ERα are primarily based on transient expression of ERβ. Here, we explored the functions of constitutively expressed ERβ in ERα-positive breast cancer lines MCF7 and T47D. We found that ERβ, under these conditions heterodimerized with ERα in presence and absence of 17β-estradiol, and induced genome-wide transcriptional changes. Widespread anti-ERα signaling was, however, not observed and ERβ was not anti-proliferative. Tamoxifen antagonized proliferation and ER-mediated gene regulation both in the presence and absence of ERβ. In conclusion, ERβ’s role in cells adapted to its expression appears to differ from its role in cells with transient expression. Our study is important because it provides a deeper understanding of ERβ’s role in breast tumors that co-express both receptors and supports an emerging bi-faceted role of ERβ.