High-throughput technology has facilitated genome-scale analyses of transcriptomic adjustments in response to environmental perturbations with an oxygen deprivation component, such as transient hypoxia or anoxia, root waterlogging, or complete submergence. We showed previously that Arabidopsis (Arabidopsis thaliana) seedlings elevate the levels of hundreds of transcripts, including a core group of 49 genes that are prioritized for translation across cell types of both shoots and roots. To recognize low-oxygen responses that are evolutionarily conserved versus species specific, we compared the transcriptomic reconfiguration in 21 organisms from four kingdoms (Plantae, Animalia, Fungi, and Bacteria). Sorting of organism proteomes into clusters of putative orthologs identified broadly conserved responses associated with glycolysis, fermentation, alternative respiration, metabolite transport, reactive oxygen species amelioration, chaperone activity, and ribosome biogenesis. Differentially regulated genes involved in signaling and transcriptional regulation were poorly conserved across kingdoms. Strikingly, nearly half of the induced mRNAs of Arabidopsis seedlings encode proteins of unknown function, of which over 40% had up-regulated orthologs in poplar (Populus trichocarpa), rice (Oryza sativa), or Chlamydomonas reinhardtii. Sixteen HYPOXIA-RESPONSIVE UNKNOWN PROTEIN (HUP) genes, including four that are Arabidopsis specific, were ectopically overexpressed and evaluated for their effect on seedling tolerance to oxygen deprivation. This allowed the identification of HUPs coregulated with genes associated with anaerobic metabolism and other processes that significantly enhance or reduce stress survival when ectopically overexpressed. These findings illuminate both broadly conserved and plant-specific lowoxygen stress responses and confirm that plant-specific HUPs with limited phylogenetic distribution influence low-oxygen stress endurance.Oxygen is required for the efficient production of ATP by plants and other aerobes. Despite the extremely high affinities for oxygen of the oxidases involved in aerobic respiration (K m of 0.08-1 mM; Hoshi et al., 1993), obligate and facultative aerobes regularly experience oxygen deprivation for myriad reasons. Although oxygen is a by-product of photosynthesis, plants lack a circulatory system to mobilize oxygen to heterotrophic roots, tubers, meristems, germinating pollen, and developing seeds. These and flooded organs are vulnerable to oxygen deficiency. In mammals, intermittent tissue or cellular hypoxia can occur due to inhibition of pulmonary respiration (i.e. sleep apnea; Azad et al., 2009) and blood flow (i.e. stroke; Mense et al., 2006), a low-oxygen environment (i.e. high altitude), or high cellular density and metabolic activity (i.e. tumor cells and ischemia [Fang et al., 2009]). In the case of microbes, oxygen availability is influenced by the density and identity of surrounding organisms and can be modulated over the course of a day or season, as observed in the microb...