Supramolecular chemistry of chalcogenadiazoles
is attracting an
increasing attention due to its applications in materials chemistry.
Chalcogen bonding allows a fine-tuning of the self-assembly and, therefore,
modulation of physical properties when these compounds are employed.
Here, we report a facile preparation of a broad scope of 1,2,4-selenadiazoles
via coupling of 2-pyridylselenenyl halides with unactivated nitriles,
that represent a novel type of supramolecular building blocks which
eagerly engage in a variety of chalcogen bonding interactions. The
substituent-dependent propensity of novel selenadiazoles for the formation
of four-center Se···N chalcogen bonding is analyzed.
Other weak interactions, which in some cases outcompete the formation
of 2Se–2N squares, are described. The discovery of the adducts
derived from α-halogenated nitriles, which form robust dimers
featuring a very specific combination of 2Se–2N square, two
Hal···Hal, and two Se···Hal noncovalent
interactions, is presented.