Background: In persons with Parkinson’s disease (pwPD) any additional somatosensory or distractor interference can influence the posture. When deprivation of vision and dual-task are associated, the effect on biomechanical performance is less consistent. The aim of this study was to evaluate the role of the visual deprivation and a cognitive task on the static balance in earlier stage PD subjects. Methods: Fifteen off-medication state pwPD (9 women and 6 men), 67.7 ± 7.3 years old, diagnosed PD since 5.4 ± 3.4 years, only Hoehn and Yahr state 2 and fifteen young control adults (7 women and 8 men) aged 24.9 ± 4.9 years, performed semi-tandem task under four randomized experimental conditions: eyes opened single-task, eyes closed single-task, eyes opened dual-task and eyes closed dual-task. The center of pressure (COP) was measured using a force plate and electromyography signals (EMG) of the ankle/hip muscles were recorded. Traditional parameters, including COP pathway length, ellipse area, mediolateral/anteroposterior root-mean-square and non-linear measurements were computed. The effect of vision privation, cognitive task, and vision X cognitive was investigated by a 2 (eyes opened/eyes closed) × 2 (postural task alone/with cognitive task) repeated-measures ANOVA after application of a Bonferroni pairwise correction for multiple comparisons. Significant interactions were further analyzed using post-hoc tests. Results: In pwPD, both COP pathway length (p < 0.01), ellipse area (p < 0.01) and mediolateral/anteroposterior root-mean-square (p < 0.01) were increased with the eyes closed, while the dual-task had no significant effect when compared to the single-task condition. Comparable results were observed in the control group for who COP pathway was longer in all conditions compared to eyes opened single-task (p < 0.01) and longer in conditions with eyes closed compared to eyes opened dual-task (p < 0.01). Similarly, all differences in EMG activity of pwPD were exclusively observed between eyes opened vs. eyes closed conditions, and especially for the forward leg’s soleus (p < 0.01) and backward tibialis anterior (p < 0.01). Conclusions: These results in pwPD without noticeable impairment of static balance encourage the assessment of both visual occlusion and dual-task conditions when the appearance of significant alteration during the dual-task could reveal the subtle worsening onset of the balance control.