There is a worldwide need to develop materials for advanced power plants with steam temperatures of 700°C and above which have the capacity to achieve high efficiency and low CO 2 emissions. This request involves the development of new grades of 9-12Cr heat-resistant steels, with a nanostructured martensite, mainly focusing on the long-term creep rupture strength of base metal and welded joints, creep-fatigue properties, and microstructure evolution during exposure at such elevated temperatures. The main shortcomings of actual 9-12Cr high-chromium steels are that the creep resistance is not enough to fulfill the engineering requirements at temperatures higher than 600°C and the material undergoes a cyclic softening. Creep strength at high temperature could be improved by a microstructural optimization through nano-precipitation, guided by computational thermodynamics, and thermomechanical control process optimization.