Boron added steels in quenched and tempered condition have been used in a large number of applications with mechanical properties and low cost requirements, i.e., automotive, petrochemical and O&G industries. For its great use and increasing demand for new applications with more severe requirements for mechanical properties, it is important to study the influence of process parameters and subsequent heat treatment on the mechanical behavior. In order to characterize the boron steel DIN 39MnCrB6-2, the metastable phase diagram and the hot ductility curve were built. The influence of tempering temperature on the microstructure and mechanical properties of tensile and impact strength was studied.For this study, DIN 39MnCrB6-2 rolled steel bars samples were used. They were provided by Gerdau -Specialty Steel Brazil Pindamonhangaba -SP. The samples could be divided into two different diameters and cross sections: square 155 mm (G1) and round 34.93 mm (G2), from sequential steps of manufacturing process. These samples were quenched and tempered and the tensile mechanical properties, impact resistance (Charpy V-notch) and hardness were analyzed. These samples were also characterized by optical microscopy and scanning electron microscopy. Samples from the first step of rolling mill (square 155 mm)were used for chemical analysis to identify the segregation pattern and also to hot ductility tests. In samples G1 it was observed inverse segregation of carbon and no abnormal ductility loss in hot ductility test. Impact resistance results showed low absorbed energy for all tempering temperatures. Microscopy observation showed coarse borocarbides. Samples G2 showed significant differences in tensile properties and hardness related to tempering temperature. However, no significant differences in impact resistance (CVN) at low test temperatures (-40 ° C) were observed. Microscopy observation showed thin borocarbides.It was concluded that the formation of borocarbides is inherent in boron steels and their coarse morphology should be avoided in order to reduce embrittlement. Borocarbide morphology control is more effective to improve impact resistance than reduction ratio.