ResumoA principal ferramenta de controle do processo BOF reside na regulagem dos parâmetros de sopro de oxigênio. As condições ótimas desse processo envolvem diversas variáveis, como vazão de oxigênio, distancia banho lança (DBL), número de furos para a saída de oxigênio na lança, entre outros fatores. Através de uma análise visual da penetração do jato e do volume movimentado, foram analisados os comportamentos para cada configuração de sopro entre diferentes combinações de bicos multifuros (3 a 6 furos), para uma distância banho lança (DBL) e vazão constantes. A análise dos parâmetros de interação entre o sopro e o banho líquido composta pelas frações de metal e escória, representados respectivamente por água e óleo de parafina é o principal objetivo deste trabalho. Foi necessário desenvolver nova metodologia para a determinação da penetração assim como proposta de nova fórmula e ajuste da constante empírica, fator K. As maiores penetrações foram alcançadas com os bicos de 3 e 4 furos. Para a configuração de 6 furos, foram encontrados os menores valores de penetração e maior volume de zonas de baixa movimentação em relação aos parâmetros estabelecidos. Palavras-chave: BOF; Modelo a frio; Penetração de jato; Zonas estagnadas; Fator K.
MASS MOVEMENT DETERMINATION BY METAL SLAG BATH COLD MODEL BY SUPERSONIC BLOW FROM MULTI NOZZLES AbstractThe primary control tool of the BOF process lies on the adjustment of the oxygen blow parameters. The best process conditions involve several variables, like oxygen flow rate, distance bath lance (DBL), number of holes for the oxygen blow, among other factors. Through a visual inspection of the jet penetration and the volume of stagnant zones, the behavior of each configuration tested was analyzed using different sets of nozzles (3 to 6 holes), and with constant distance bath lance (DBL) and flow rate. The analysis of the interaction parameters between the oxygen blow, the molten metal and slag, represented respectively by water and paraffin oil, is the main objective of the present work. It was necessary to develop a new methodology in order to determine the penetration, propose a new formula and adjust the empirical constant, called K factor. The highest penetration were achieved for the nozzles with 3 and 4 holes. The lowest penetration and the highest volume of stagnant zones were represented for the configuration of 6 holes.