Post-bond heat treatment (PBHT) is an effective way to improve the bonding quality of a brazed joint. Herein, brazing of a nickel-based single crystal superalloy is carried out using a Ni-Cr-Co-B-Si-Al-Ti-W-Mo filler alloy, and the microstructure and creep property of the brazed joint are systematically investigated using scanning electron microscopy (SEM), Thermo-Calc software, an electron probe micro-analyzer (EPMA), X-ray diffractometer, confocal scanning laser microscope (CSLM), and transmission electron microscopy (TEM). The results reveal that the as-prepared joint only consists of an isothermally solidified zone (ISZ) and an athermally solidified zone (ASZ), where the cubic γ′ phase is observed in the ISZ, and skeleton-like M3B2, γ + γ′ eutectic and reticular G phases are observed in the ASZ. Furthermore, the γ + γ′ eutectic and G phases disappear and the M3B2 alters from a skeleton-like to block-like shape in the ASZ after PBHT. Meanwhile, some lath-like M3B2 phases are precipitated at the edge of the ISZ and several M3B2 phases are precipitated in the base metal, forming a new zone in the brazed joint, namely at the diffusion affected zone (DAZ). Owing to the removal of low melting point eutectics from the as-prepared joint, the creep life also increases from 188 h to 243 h after PBHT. The current work provides a method for the optimization of brazed joints based on the Ni-based single crystal superalloy.