Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Beneficial effects could be achieved by various agents such as nitroglycerin, botulinum toxin A (BoTA), and clopidogrel to improve skin flap ischaemia and venous congestion injuries. Eighty rats were subjected to either arterial ischaemia or venous congestion and applied to a bipedicled U-shaped superficial inferior epigastric artery (SIEA) flap with the administration of nitroglycerin, BoTA, or clopidogrel treatments. After 7 days, all rats were sacrificed for flap evaluation. Necrotic area percentage was significantly minimized in flaps treated with clopidogrel (24.49%) versus the ischemic flaps (34.78%); while nitroglycerin (19.22%) versus flaps with venous congestion (43.26%). With ischemia, light and electron microscopic assessments revealed that nitroglycerin produced degeneration of keratinocytes and disorganization of collagen fibers. At the same time, with clopidogrel administration, there was an improvement in the integrity of these structures. With venous congestion, nitroglycerin and BoTA treatments mitigated the epidermal and dermal injury; and clopidogrel caused coagulative necrosis. There was a significant increase in tissue gene expression and serum levels of vascular endothelial growth factor (VEGF) in ischemic flaps with BoTA and clopidogrel, nitroglycerin, and BoTA clopidogrel in flaps with venous congestion. With the 3 treatment agents, gene expression levels of tumor necrosis factor-α (TNF-α) were up-regulated in the flaps with ischemia and venous congestion. With all treatment modalities, its serum levels were significantly increased in flaps with venous congestion and significantly decreased in ischemic flaps. Our analyses suggest that the best treatment option for ischemic flaps is clopidogrel, while for flaps with venous congestion are nitroglycerin and BoTA.
Beneficial effects could be achieved by various agents such as nitroglycerin, botulinum toxin A (BoTA), and clopidogrel to improve skin flap ischaemia and venous congestion injuries. Eighty rats were subjected to either arterial ischaemia or venous congestion and applied to a bipedicled U-shaped superficial inferior epigastric artery (SIEA) flap with the administration of nitroglycerin, BoTA, or clopidogrel treatments. After 7 days, all rats were sacrificed for flap evaluation. Necrotic area percentage was significantly minimized in flaps treated with clopidogrel (24.49%) versus the ischemic flaps (34.78%); while nitroglycerin (19.22%) versus flaps with venous congestion (43.26%). With ischemia, light and electron microscopic assessments revealed that nitroglycerin produced degeneration of keratinocytes and disorganization of collagen fibers. At the same time, with clopidogrel administration, there was an improvement in the integrity of these structures. With venous congestion, nitroglycerin and BoTA treatments mitigated the epidermal and dermal injury; and clopidogrel caused coagulative necrosis. There was a significant increase in tissue gene expression and serum levels of vascular endothelial growth factor (VEGF) in ischemic flaps with BoTA and clopidogrel, nitroglycerin, and BoTA clopidogrel in flaps with venous congestion. With the 3 treatment agents, gene expression levels of tumor necrosis factor-α (TNF-α) were up-regulated in the flaps with ischemia and venous congestion. With all treatment modalities, its serum levels were significantly increased in flaps with venous congestion and significantly decreased in ischemic flaps. Our analyses suggest that the best treatment option for ischemic flaps is clopidogrel, while for flaps with venous congestion are nitroglycerin and BoTA.
Background: A systematic review and meta-analysis of case-control animal model studies will help clarify the vascular effects of botulinum toxin (BTX). Methods: Preferred Reporting Items of Systematic reviews and Meta-Analyses guidelines were used to identify all animal case-control studies published before September 13, 2020, evaluating the vascular effects of BTX. Primary parameters included the following: perfusion, flap survival, arterial and venous dilation, and arterial and venous thrombosis. Results: Thirty-six studies with 1032 animals met the systematic review inclusion criteria. Twenty-nine studies had quantifiable data for statistical analysis. Statistically significant increases in perfusion with BTX over saline were detected within 1 day and sustained up to 8 weeks. The following represent weighted mean data from the meta-analysis. The administration of BTX has a 26% increase in both random pattern and pedicled flap survival area over controls. Botulinum toxin causes vasodilation. Botulinum toxin increases vessel diameter in arteries by 40% and in veins by 46% compared with saline controls. The administration of BTX reduces thrombosis by 85% in arteries and by 79% in veins compared with saline controls. Vascular effects were consistent across both BTX-A and BTX-B serotypes, multiple animal species, and various doses. No clear relationships between vascular effects and BTX pretreatment time were identified. Conclusions: Perivascular BTX administration intraoperatively or as a chemical delay pretreatment several days before surgery in multiple animal species and models shows multiple changes to the vascular system. Extrapolation of lessons learned from this systematic review and meta-analysis of animal models could expand research and clinical use of BTX in human vascular disease and surgery.
Botulinum toxin type A (BTXA) has been reported to increase the survival of ischemic skin flaps; however, the exact mechanism underlying this effect remains unclear and needs to be further established. The present study aimed to elucidate whether autophagy caused by BTXA functions as a protection mechanism and to identify the mechanisms of its regulation by BTXA in human dermal microvascular endothelial cells (HDMECs) subjected to hypoxia/reoxygenation (H/R)-induced injury. HDMECs were harvested from the upper eyelid tissues of female blepharoplasty patients. HDMECs were exposed to BTXA treatment for 12 h and then subjected to hypoxia for 8 h, followed by reoxygenation for 24 h. Chloroquine diphosphate salt (CQ) was used as an autophagy inhibitor. H/R led to extreme injury to the HDMECs as indicated by the rise in the apoptosis rate, which was significantly attenuated by BTXA pretreatment. The outcomes demonstrated that H/R caused autophagy, as evidenced by a higher type II/type I ratio of light chain 3 (LC3), increased expression of Beclin-1 and increased autophagosome formation. BTXA enhanced autophagy and attenuated apoptosis in a dose-dependent manner, whereas CQ attenuated the BTXA antiapoptotic effects and inhibited the formation of autophagolysosomes, which caused clustering of the LC3-II in cells. In conclusion, autophagy promoted by BTXA serves as a potential protective effect on ischemia/reperfusion injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.