We analyze the dynamics of fast electrons in plasmas containing partially ionized impurity atoms, where the screening effect of bound electrons must be included. We derive analytical expressions for the deflection and slowing-down frequencies, and show that they are increased significantly compared to the results obtained with complete screening, already at sub-relativistic electron energies. Furthermore, we show that the modifications to the deflection and slowing down frequencies are of equal importance in describing the runaway current evolution. Our results greatly affect fastelectron dynamics and have important implications, e.g. for the efficacy of mitigation strategies for runaway electrons in tokamak devices, and energy loss during relativistic breakdown in atmospheric discharges.Introduction.-Fast electrons, having speeds well above the thermal speed of the bulk plasma population, are ubiquitous in space and laboratory plasmas. An important process leading to such high-energy electrons is the runaway mechanism. Runaway electrons can be produced in the presence of an accelerating electric field if it exceeds the critical value E c = n e e 3 ln Λ 0 /4πǫ