Objective: Sympathetic nervous system (SNS) overactivity is a risk factor for insulin resistance and cardiovascular disease (CVD). We evaluated the impact of bromocriptine-QR, a dopamine-agonist antidiabetes medication, on elevated resting heart rate (RHR) (a marker of SNS overactivity in metabolic syndrome), blood pressure (BP) and the relationship between bromocriptine-QR's effects on RHR and HbA1c in type 2 diabetes subjects.Design and Subjects: RHR and BP changes were evaluated in this post hoc analysis of data from a randomized controlled trial in 1014 type 2 diabetes subjects randomized to bromocriptine-QR vs placebo added to standard therapy (diet ± ≤2 oral antidiabetes medications) for 24 weeks without concomitant antihypertensive or antidiabetes medication changes, stratified by baseline RHR (bRHR).
Results: In subjects with bRHR ≥70 beats/min, bromocriptine-QR vs placebo reduced RHR by −3.4 beats/min and reduced BP (baseline 130/79; systolic, diastolic, mean arterial BP reductions [mm Hg]: −3.6 [P = .02], −1.9 [P = .05], −2.5 [P = .02]). RHR reductions increased with higher baseline HbA1c (bHbA1c) (−2.7 [P = .03], −5 [P = .002], −6.1 [P = .002] with bHbA1c ≤7, >7, ≥7.5%, respectively] in the bRHR ≥70 group and more so with bRHR ≥80 (−4.5 [P = .07], −7.8 [P = .015], −9.9 [P = .005]). Subjects with bRHR <70 had no significant change in RHR or BP. With bHbA1c ≥7.5%, %HbA1creductions with bromocriptine-QR vs placebo were −0.50 (P = .04), −0.73 (P = .005) and −1.22 (P = .008) with bRHR <70, ≥70 and ≥80, respectively. With bRHR ≥70, the magnitude of bromocriptine-QR-induced RHR reduction was an independent predictor of bromocriptine-QR's HbA1c lowering effect.
Conclusion:Bromocriptine-QR lowers elevated RHR with concurrent decrease in BP and hyperglycaemia. These findings suggest a potential sympatholytic mechanism contributing to bromocriptine-QR's antidiabetes effect and potentially its previously demonstrated effect to reduce CVD events.
K E Y W O R D Sdopamine, sympathetic nervous system, type 2 diabetes