Additive manufacturing has seen sustained growth in both consumer and industrial areas. fused deposition manufacturing (FDM), a specific additive manufacturing technology, has seen increased sales in consumer markets. In order to maintain growth, FDM will be increasingly used for load-bearing applications. However, the mechanical reliability of FDM polymers and composites is not well understood. This can be dangerous to property and safety. Presented in this paper are more than 16 distinct populations comprised of at least 23 unique tensile tests, a total of 506 tensile tests. Weibull statistics were used to quantify variance in physical properties of FDMed materials. It is the hope of the author that these data will provide essential information for designers to make parameter selections for safe load-bearing applications of FDM parts. Using the deviations from Weibull, scanning electron microscopy, and micro X-ray CT, the author examined the origins of variations in mechanical properties. A key factor in mechanical reliability comprises variations in the size and shape of inter-bead pores. In the final section, this problem was addressed with a novel vibration assisted FDM (VA-FDM) that reduced the porosity by 3 %, increased the fracture strength by 12 %, and doubled the tensile strength reliability. These findings showed that inter-bead porosity can be significantly reduced by localized extruder vibrations and that reduced inter-bead porosity influences the mechanical properties and variations in those properties. v ACKNOWLEDGMENTS I would like to thank Dr. Ozgur Keles for his guidance, encouragement, and patience during this entire thesis process. I would also like to acknowledge the support of Dr. Guna Selvaduray and Dr. Raymond Yee for sharing their knowledge and expertise. A special thank you to Carl Zeiss X-ray Microscopy Inc. and Jeffery Gelb for their assistance in acquiring x-ray CT image; as well as the Material Engineering SEM lab at SJSU and Ryan Thompson for their assistance in acquiring SEM fracture surface images. Furthermore, the author would like to thank Briana and Alex Cress for their many sacrifices when resurrecting the 3D printer; as well as Jimmy Huynh's sample testing support and David Loja for sample photographs. I would also like to thank my family Melissa Loja, Cynthia Anderson and William (Oz) Anderson for instilling the value of science and education from a young age. I am eternally grateful for my family's patience, support, and love. None of this would have been possible without the love and support of my grandparents, Bill and Mugsie Anderson. Finally, I'd like to thank my partner, Briana Squiers, for being the light in my life and giving me the motivation to keep moving forward.