In recent years, additive manufacturing has reached the required reliability to effectively compete with standard production techniques of mechanical components. In particular, the geometrical freedom enabled by innovative manufacturing techniques has revolutionized the design trends for compact heat exchangers. Bioinspired structures, such as the gyroid lattice, have relevant mechanical and heat exchange properties for their light weight and increased heat exchange area, which also promotes the turbulent regime of the coolant. This work focuses its attention on the effect of the relevant design parameters of the gyroid lattice on heat exchange performances. A numerical comparative analysis is carried out from the thermal and fluid dynamic points of view to give design guidelines. The results of numerical analyses, performed on cylindrical samples, are compared to the experimental results on the pressure drop. Lattices samples were successfully printed with material extrusion, which is a low-cost and easy-to-use metal AM technology. For each lattice sample, counter pressure, heat exchange, and turbulence intensity ratio are calculated from the numerical point of view and discussed. At the end, the gyroid lattice is proven to be very effective at enhancing the heat exchange in cylindrical pipes. Guidelines are given about the choice of the best lattice, depending on the considered applications.