a b s t r a c tCadmium (Cd) and arsenic (As) are the main metal/metalloid contaminants in the coastal environments of the Bohai Sea, China. In this work, a combined proteomic and metabolomic approach was applied to investigate the biological effects of Cd and As (V) in the early life stage (D-shape larvae) of mussel Mytilus galloprovincialis. Results indicated that Cd was a potential immune toxicant to D-shape larval mussel because of the numerous proteomic responses related to immune system. Additionally, Cd induced oxidative stress, cellular injury and disturbance in nucleic acid metabolism in D-shape larval mussels. However, only two identified proteins were significantly altered in As (V)-treated group, suggesting that D-shape larval mussel was less sensitive to As (V) than to Cd at protein level. These two proteins in response to As (V) suggested that As (V) influenced anti-oxidative system and cell proliferation in Dshape larval mussels. Metabolic responses indicated that Cd and As (V) induced disturbances in osmotic regulation and energy metabolism in D-shape larval mussels via different metabolic pathways. In addition, Cd reduced lipid metabolism as well. This work demonstrated that a combination of proteomics and metabolomics could provide an insightful view in the biological effects of pollutants in mussel M. galloprovincialis at an early life stage.