On-farm trial was conducted from 2005 to 2008 to test the hypothesis that reduction of total dry matter (TDM) in crops can occur after a decreased radiation use efficiency (RUE) due to shortage of nitrogen and irrigation, we applied three irrigations treatments (D1, D2 and D3) and four nitrogen rates (N1, N2, N3 and N4). Photosynthetic active radiation absorbed or cumulative light interception (PARabs) and RUE of Durum wheat were measured. Results showed that D1N1 treatment recorded the highest LAI, PARabs, TDM and RUE. The maximum LAI was obtained 140 DAS (days after sowing) under treatment D1N2 (6.42) and the lowest LAI at the same phase belonged to treatment D2N4 (3.86). At the harvest, the maximum of TDM was 1487 g m -2 recorded under treatment D1N1. The minimum value obtained was 930 g m -2 under treatment D3N4. Also, PARabs was improved under D1N1 and D1N2 treatments. With reduced N application rates and irrigation doses, PARabs was decreased and the lowest values were observed under D3N4 condition. The RUE, varied from 1.55 g MJ -1 (D1N1) to 1.24 g MJ -1 (D3N4), was affected and decreased under deficit irrigation and low nitrogen conditions. In conclusion, the results of this study seem to show that D1N1 and D1N2 treatments can be beneficial for Durum wheat under field conditions in semi arid zone of Tunisia, for the purpose of improving RUE and maximizing grain yield.