Direct growth of carbon nanotubes (CNTs) array onto silicon substrate by the chemical vapor deposition (CVD) is reported. Experimental results show that the thickness of the buffer layer has a significant effect on the morphology and defects of the array, and when the buffer layer is about 15 nm, the best array on the silicon substrate can be obtained. Moreover, when the growth time is less than the threshold time (70 minutes), the array height will increase with the increase of the time. Importantly, when the growth time is higher than this threshold time, the growth of array will stop, but when the growth is continuing, the amorphous carbon and carbon can cluster, which will affect the structure of the array. These results provide a good material basis for the device, thermal, and conductivity technology.