This study is dedicated to the examination of cavitation-induced erosion, a critical factor in optimizing the efficiency of hydraulic systems, including hydropower plants and pumping systems. To accomplish this, we conducted a sensitivity analysis utilizing a cavitation jet apparatus (CJA) and an experimental configuration that featured a vertical cylindrical test tank, a submerged nozzle, and an aluminum sample (specifically, alloy 6351 T6). The study maintained a consistent standoff distance of 5 cm and an orifice diameter of 2 × 10-3 m. Two distinct nozzle geometries were tested to assess their influence on cavitation erosion. The outcomes revealed that the 20° conical sharped-edges nozzle resulted in the highest erosion rates, while the commercial nozzle (MEG 2510) caused comparatively less erosion. By standardizing the test duration to 1200 seconds and using a cavitation index of 0.14, the researchers avoided overlapping pits. In summary, the CJA, with these adjustments, demonstrated its effectiveness as a tool for evaluating the resistance of solid surfaces to cavitation.