Charge carrier mobility in transparent conducting oxide (TCO) films is mainly limited by impurity scattering, grain boundary scattering, and a hopping transport mechanism. We enhanced the mobility in nanocrystal (NC)-based TCO films, exceeding even typical values found in sputtered thin films, by addressing each of these scattering factors. Impurity scattering is diminished by incorporating cerium as a dopant in indium oxide NCs instead of the more typical dopant, tin. Grain boundary scattering is reduced by using large NCs with a size of 21 nm, which nonetheless were sufficiently small to avoid haze due to light scattering. In-filling of the precursor solution followed by annealing results in a NC-based composite film which conducts electrons through metal-like transport at room temperature, readily distinguished by the positive temperature coefficient of resistance. Cerium-doped indium oxide (Ce:InO) NC-based composite films achieve a high mobility of 56.0 cm/V·s, and a low resistivity of 1.25 × 10 Ω·cm. The films are transparent to a broad range of visible and near-infrared light from 400 nm to at least 2500 nm wavelength. On the basis of the high conductivity and high transparency of the Ce:InO NC-based composite films, the films are successfully applied as transparent electrodes within an electrochromic device.