Rough-strip energy dissipators (R-SEDs) can be arranged at the bend bottom of curved spillways to induce energy dissipation and flow diversion for bend flow. Using the entropy weight and TOPSIS methods, a multi-criteria evaluation system was established for the comprehensive energy dissipation and flow diversion effects of R-SEDs. Orthogonal tests and numerical simulation were conducted to analyze factors affecting these effects (average R-SED height, R-SED angle, R-SED spacing, bend width, bend centerline radius and discharge flow rate). It was found that bend width and bend centerline radius significantly affected R-SEDs' energy dissipation effects. Average R-SED height, R-SED spacing and bend centerline radius significantly affected R-SEDs' flow diversion effects. Bend width, average R-SED height and bend centerline radius significantly affected R-SEDs' comprehensive effects, i.e., the combined effects of energy dissipation and flow diversion. Their energy dissipation effects were larger than the flow diversion effects. R-SEDs can effectively alleviate adverse hydraulic phenomena in curved spillways. With the recommended parameters, R-SEDs showed the best performance, with the energy dissipation rate increasing by 18.67% and the water surface superelevation coefficient decreasing by 26.14%. The accuracy of the multi-criteria evaluation system was verified. This study can provide a reference for the R-SED design of similar curved spillways.