In fire-prone environments, the "event-dependent hypothesis" states that plant population changes are driven by the unique set of conditions of a fire (e.g., fire season, climate). Climate variability, in particular changes in rainfall patterns, can be most important for seeder species, since they must regenerate after fire from seeds, and for Mediterranean shrublands, given the high yearly variability of rainfall in these ecosystems. Yet, the role of rainfall variability and its interaction with fire characteristics (e.g., fire season) on plant populations has received little attention. Here we investigated the changes in seedling emergence and recruitment of three seeder species (<i>Cistus ladanifer</i>, <i>Erica umbellata</i> and <i>Rosmarinus officinalis</i>) after fires lit during three different years and at two times during the fire season (early and late in the fire season) to account for potential changes in the soil seed-bank during the year. Three plots were burned at each season, for a total of 18 plots burned during the three years. After fire, emerged seedlings were tallied, tagged and monitored during three years (two the last burning year). Rainfall during the study period was rather variable, and in some years was well below average. Seedling emergence after fire varied by a factor of 3 to 10, depending on the species and on the burning year. The bulk of seedling emergence occurred in the first year after fire, and seedling recruitment at the end of the study period was tightly correlated with this early emergence. Seedling emergence in <i>E umbellata</i> and <i>R officinalis</i>, but not in <i>C ladanifer</i>, were correlated with precipitation in the fall and winter immediately after the fire, being <i>E umbellata</i> most sensitive to low rainfall. Fire season was generally not an important factor in controlling emergence and recruitment. We discuss how projected changes in rainfall patterns with global warming can alter the balance of species in this shrubland, and can drive some species to near local extinction