In this study, a novel polystyrene-poly(hydroxamic acid) copolymer was synthesized as an effective adsorbent for the treatment of rare earth elements. Through the use of elemental analysis as well as FTIR, SEM, XPS, and Brunauer-Emmett-Teller (BET) surface area measurement, the synthesized polymer was found to have a specific surface area of 111.4 m2·gâ1. The adsorption performances of rare metal ions were investigated under different pH levels, contact times, initial concentrations of rare earth ions, and temperatures. The adsorption equilibrium for La3+, Ce3+, and Y3+ onto a polystyrene-poly(hydroxamic acid) copolymer is described by the Langmuir model, which confirms the applicability of monolayer coverage of rare earth ions onto a polystyrene-poly(hydroxamic acid) copolymer. The amount of adsorption capacities for La3+, Ce3+, and Y3+ reached 1.27, 1.53, and 1.83 mmol·gâ1 within four hours, respectively. The adsorption process was controlled by liquid film diffusion, particle diffusion, and chemical reaction simultaneously. The thermodynamic parameters, including the change of Gibbs free energy (âG), the change of enthalpy (âH), and the change of entropy (âS), were determined. The results indicate that the adsorption of resins for La3+, Ce3+ and Y3+ was spontaneous and endothermic. The polymer was also used as a recyclable adsorbent by the desorption experiment.